Advanced Memory Management



Main Points

* Applications of memory management

— What can we do with ability to trap on memory
references to individual pages?

* File systems and persistent storage
— Goals
— Abstractions
— Interfaces



Address Translation Uses

Process isolation

— Keep a process from touching anyone else’s memory, or
the kernel’s

Efficient interprocess communication

— Shared regions of memory between processes
Shared code segments

— E.g., common libraries used by many different programs
Program initialization

— Start running a program before it is entirely in memory
Dynamic memory allocation

— Allocate and initialize stack/heap pages on demand



Address Translation (more)

Program debugging

— Data breakpoints when address is accessed
Zero-copy I/0

— Directly from I/O device into/out of user memory

Memory mapped files
— Access file data using load/store instructions

Demand-paged virtual memory

— [llusion of near-infinite memory, backed by disk or
memory on other machines



Address Translation (even more)

Checkpoint/restart

— Transparently save a copy of a process, without
stopping the program while the save happens

Persistent data structures

— Implement data structures that can survive system
reboots

Process migration

— Transparently move processes between machines
Information flow control

— Track what data is being shared externally
Distributed shared memory

— lllusion of memory that is shared between machines
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Virtual Machines and Virtual Memory
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Hardware Support for
Virtual Machines

* x86 recently added hardware support for
running virtual machines at user level

* Operating system kernel initializes two sets of
translation tables
— One for the guest OS
— One for the host OS

 Hardware translates address in two steps

— First using guest OS tables, then host OS tables
— TLB holds composition



VMM Memory Compression
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Transparent Checkpoint
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Question

* At what point can we resume the execution of
a checkpointed program?
— When the checkpoint starts?
— When the checkpoint is entirely on disk?
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Deterministic Debugging

* Can we precisely replay the execution of a
multi-threaded process?

— |f process does not have a memory race

* From a checkpoint, record:
— All inputs and return values from system calls
— All scheduling decisions

— All synchronization operations

* Ex: which thread acquired lock in which order



Process Migration

 What if we checkpoint a process and then
restart it on a different machine?

— Process migration: move a process from one
machine to another

— Special handling needed if any system calls are in
progress
* Where does the system call return to?



Cooperative Caching

 Can we demand page to memory on a
different machine?
— Remote memory over LAN much faster than disk

— On page fault, look in remote memory first before
fetching from disk



Distributed Virtual Memory

* Can we make a network of computers appear to be a
shared-memory multiprocessor?

— Read-write: if page is cached only on one machine

— Read-only: if page is cached on several machines

— Invalid: if page is cached read-write on a different machine
* On read page fault:

— Change remote copy to read-only

— Copy remote version to local machine
* On write page fault (if cached):

— Change remote copy to invalid

— Change local copy to read-write



Recoverable Virtual Memory

e Data structures that survive failures
— Want a consistent version of the data structure

— User marks region of code as needing to be
atomic

* Begin transaction, end transaction

— If crash, restore state before or after transaction



Recoverable Virtual Memory

On begin transaction:

— Snapshot data structure to disk

— Change page table permission to read-only
On page fault:

— Mark page as modified by transaction

— Change page table permission to read-write
On end transaction:

— Log changed pages to disk

— Commit transaction when all mods are on disk
Recovery:

— Read last snapshot + logged changes, if committed



