Advanced Memory Management

Main Points

* Applications of memory management

— What can we do with ability to trap on memory
references to individual pages?

* File systems and persistent storage
— Goals
— Abstractions
— Interfaces

Address Translation Uses

Process isolation

— Keep a process from touching anyone else’s memory, or
the kernel’s

Efficient interprocess communication

— Shared regions of memory between processes
Shared code segments

— E.g., common libraries used by many different programs
Program initialization

— Start running a program before it is entirely in memory
Dynamic memory allocation

— Allocate and initialize stack/heap pages on demand

Address Translation (more)

Program debugging

— Data breakpoints when address is accessed
Zero-copy I/0

— Directly from I/O device into/out of user memory

Memory mapped files
— Access file data using load/store instructions

Demand-paged virtual memory

— [llusion of near-infinite memory, backed by disk or
memory on other machines

Address Translation (even more)

Checkpoint/restart

— Transparently save a copy of a process, without
stopping the program while the save happens

Persistent data structures

— Implement data structures that can survive system
reboots

Process migration

— Transparently move processes between machines
Information flow control

— Track what data is being shared externally
Distributed shared memory

— lllusion of memory that is shared between machines

Web Server

Server i)
Request Parse Request Reply | Format Raply
Butter | ? - | Bufter -
i : .
1. 3. 5] 14
Hetwork Kamel Copry File Read Keerl Copy Write ang Cogy
Sackel Read 1 ' H 1o K roa | Bl Tew
Kamel T - :
- .
2. . 7. 12
Copy Arriving Disk Reques!t Disk Data Format Detgoing
Packet (DMA) : [ONA Packet and DMA
> - - -
Hardware

Network Interface Disk Interface

Zero Copy I/O
Block Aligned Read/Write System Calls

Before Zero Copy

Usaar Pags Tabie

Ermgly Butler

Full Kl Buller

-

After Zero Copy

Uoar Page Table

Free Page

Full Llser ard
Kol Bullee

Virtual Machines and Virtual Memory

Guest Vrhisyl
Addrass Space

ez

Guas! Wiy

b

Suest Physica

Ardrass Space
Guessl Page Table

L Gues! Physical

Addrass

Addrass

Guas! Payacal

- .'

Huosl Page Table

Masl Myeical

Aarrross

Mast Physical
Memory

Segment Table Page Table A Page Table B
0 Page Table A 0 0002 0 0001
1 Page Table B 1 0006 1 0004
X (restinvalid) 2 0000 2 0003
3 0005 X (restinvalid)

X (restinvalid)

Segment Table

Page Table K

0 Page Table K

X

(rest invalid)

0
1

N OO O AWM

X

BEEF
FO00
CAFE
3333
(invalid)
BA11
DEAD
5555

(rest invalid)

Guest Virlisy!
Addrass Space

Mdrers

Guas! iruy

Shadow Page Tables

- ..

Guess| Page Tadle

Addrass

Shadew Pape Table

Guest Physical
Addrass Space

Gunsl Mhyical

.........

Goess| Physicy
Addrass

Hast Pawsical

---’

Huoesl Page Table

.........

Hasl Physical

Aarirecss

Hasl Physical
Nemory

Hardware Support for
Virtual Machines

* x86 recently added hardware support for
running virtual machines at user level

* Operating system kernel initializes two sets of
translation tables
— One for the guest OS
— One for the host OS

 Hardware translates address in two steps

— First using guest OS tables, then host OS tables
— TLB holds composition

VMM Memory Compression

Guest Process Guest Frpsical Address Haost Physical
m YN M Space MM Memory
Guast Virtss Guees| Page Table Guess! Physical Huesl Page Table
Addrees Atk rass
L et = TS ' 1 BT .
Guasl Myuical Mol Physical
Addrass fardreoss
! . i ' ol PageA
L] I 1] :
Guest Prozess Guest Physical Address el Faqed
on YW 22 Space, YM 22
Guast irna Oves! Page Table Guess| Phyrics ook Fage Tanle
Acrens Addrass
4 -.-...-..-.--......' .-..-..............' s
: Guest Physical
b Aodress -9
.
hvaid
Dalta Reladve

b Page A

Transparent Checkpoint

Capy al Procass Copy of Progess
Progess @ | Process
| Chechkgoim Restare
Execule x Exacine
Instruclions Fatumm Ireshruc lians

Time

Question

* At what point can we resume the execution of
a checkpointed program?
— When the checkpoint starts?
— When the checkpoint is entirely on disk?

Incremental Checkpoint

Checkpoint 1 Checkpoint 2 Checkpoint 3 Hestore
(Full) (Full)
A A
ki p 3
C B L
0 9 Q
; : | 3

Deterministic Debugging

* Can we precisely replay the execution of a
multi-threaded process?

— |f process does not have a memory race

* From a checkpoint, record:
— All inputs and return values from system calls
— All scheduling decisions

— All synchronization operations

* Ex: which thread acquired lock in which order

Process Migration

 What if we checkpoint a process and then
restart it on a different machine?

— Process migration: move a process from one
machine to another

— Special handling needed if any system calls are in
progress
* Where does the system call return to?

Cooperative Caching

 Can we demand page to memory on a
different machine?
— Remote memory over LAN much faster than disk

— On page fault, look in remote memory first before
fetching from disk

Distributed Virtual Memory

* Can we make a network of computers appear to be a
shared-memory multiprocessor?

— Read-write: if page is cached only on one machine

— Read-only: if page is cached on several machines

— Invalid: if page is cached read-write on a different machine
* On read page fault:

— Change remote copy to read-only

— Copy remote version to local machine
* On write page fault (if cached):

— Change remote copy to invalid

— Change local copy to read-write

Recoverable Virtual Memory

e Data structures that survive failures
— Want a consistent version of the data structure

— User marks region of code as needing to be
atomic

* Begin transaction, end transaction

— If crash, restore state before or after transaction

Recoverable Virtual Memory

On begin transaction:

— Snapshot data structure to disk

— Change page table permission to read-only
On page fault:

— Mark page as modified by transaction

— Change page table permission to read-write
On end transaction:

— Log changed pages to disk

— Commit transaction when all mods are on disk
Recovery:

— Read last snapshot + logged changes, if committed

